
Multi-Object Rearrangement with Monte Carlo Tree Search:
A Case Study on Planar Nonprehensile Sorting

Haoran Song1˚, Joshua A. Haustein2˚, Weihao Yuan1,
Kaiyu Hang3, Michael Yu Wang1, Danica Kragic2, Johannes A. Stork4

Abstract— In this work, we address a planar non-prehensile
sorting task. Here, a robot needs to push many densely packed
objects belonging to different classes into a configuration
where these classes are clearly separated from each other. To
achieve this, we propose to employ Monte Carlo tree search
equipped with a task-specific heuristic function. We evaluate
the algorithm on various simulated and real-world sorting tasks.
We observe that the algorithm is capable of reliably sorting
large numbers of convex and non-convex objects, as well as
convex objects in the presence of immovable obstacles.

I. INTRODUCTION

Rearranging objects, e.g., to clear a path or clean a table,
is an essential skill for an autonomous robot. The robot
needs to plan in which order to move the objects and
whereto. This rearrangement planning problem is known
to be NP- or even PSPACE-hard depending on the goal
definition [1]. Accordingly, various specialized algorithms
have been proposed that address specific practical rearrange-
ment problems efficiently. For instance, several prior works
specifically address navigating a mobile robot among movable
obstacles [2–5]. Similarly, clearing clutter for grasping has
been addressed by pushing obstacles aside locally [6–8], or
recursively removing obstructions through pick-and-place [9].
Even for large-scale rearrangements, where many objects
need to be arranged to target locations, efficient approximative
algorithms have been proposed. While early works [9, 10]
were limited to monotone problems, where each object needs
to be moved at most once, recent works have overcome
this limitation [11–15]. Large-scale rearrangements, however,
have predominantly been addressed using pick-and-place or
single-object pushing.

We are interested in large-scale non-prehensile rearrange-
ment problems, where a robot pushes multiple objects
simultaneously to reach a goal that is characterized by the
final poses of many objects. Specifically, we consider the
planar non-prehensile sorting task illustrated in Fig. 1. Here,
a planar pusher has to sort objects belonging to different
classes into homogenous distinct clusters. The problem is
challenging, as it is non-monotone, requires multi-object

1H. Song, W. Yuan and M. Y. Wang are with the Robotics Institute, Hong
Kong University of Science and Technology, Hong Kong, China.

2J. A. Haustein and D. Kragic are with the Centre for Autonomous
Systems, EECS, KTH Royal Institute of Technology, Stockholm, Sweden.

3K. Hang is with the Department of Mechanical Engineering and Material
Science, Yale University, New Haven, Connecticut, USA

4J. A. Stork is with the Centre for Applied Autonomous Sensor Systems,
Orebro University, Orebro, Sweden.

˚These authors contributed equally to this work

Before

AfterAfter

Before

After

Fig. 1: The planar push sorting task: A planar robot (black) is tasked
to separate objects belonging to different classes into homogenous
distinct clusters in a bounded workspace, optionally in the presence
of obstacles (grey).

pushing to be solved efficiently, and involves robot motion
planning to circumnavigate obstacles.

We propose to address this problem with Monte Carlo
tree search (MCTS) [16]. Monte Carlo tree search is a
planning algorithm for sequential decision-making problems
and well suited for the sorting task as we will show. First,
the algorithm can search in high-dimensional state spaces
by only performing a forward search. This allows us to
employ commonly available physics models to predict the
outcome of pushing actions that involve complex multi-object,
multi-contact dynamics. Second, the algorithm employs an
adaptive sampling strategy that focuses its search on the
parts of the state space that are relevant to solving the
problem. This is particularly important as the sorting task has
a large state space and modeling its multi-contact physics is
computationally expensive. Third, MCTS requires no explicit
target states but instead can be applied when there is only
a discriminative function to evaluate whether a state is a
goal. This is the case in the sorting task, where the goal
is defined through relative positions of objects rather than
absolute positions.

The contribution of this work lies in adapting the MCTS
algorithm to the sorting task and evaluating it on a variety
of scenarios. To reduce the need for long physics rollouts,
we propose a heuristic reward signal that successfully guides

the algorithm towards sorted states. Furthermore, inspired
by the recent success of AlphaGo [17], we train a rollout
policy from data to improve the algorithm’s performance
further. We evaluate the approach for different numbers of
objects and classes, different object shapes (convex and non-
convex), and sorting in the presence of immovable obstacles.
In addition, we evaluate the approach’s effectiveness under
modeling inaccuracies in simulation and on a real robot.

The remainder of this paper is structured as follows. We first
formally define our sorting task in Sec. II, before discussing
related work in more detail in Sec. III. Thereafter, we provide
background information on MCTS in Sec. IV and present
our adaptations in Sec. V. We present experimental results in
Sec. VI and conclude in Sec. VII.

II. PROBLEM DEFINITION
In the planar push sorting problem (PPSP), a robot R is

tasked to sort a set of movable objects M in a bounded
workspace according to given class membership, see Fig. 1.
The workspace is planar and all objects are assumed to
be rigid. Accordingly, the state spaces are Xi Ă SEp2q for
i P tRu Y M, and the composite state space of the world
is X “ X1 ˆ . . .X|M| ˆ XR. The workspace may contain
immovable obstacles O that needs to be avoided. If there are
no two objects intersecting and no collisions with obstacles,
we refer to states x P X to be valid.

Each movable object belongs to exactly one class c P C.
These classes are user-defined and can be based on, for
example, shared physical properties (e.g., color, shape, size)
or a common functional purpose of the objects. The task of
the sorting problem is to rearrange the objects into a sorted
valid state according to their class membership. A sorted
state is a state where the objects of each class form disjoint
clusters, see Fig. 1. More formally, let CHpci, xq Ă R2

denote the smallest convex set that contains all objects of
class ci P C in state x P X . Furthermore, let the function

dcpA,Bq “ min
aPA,bPB

}a´ b}2 (1)

denote the smallest pairwise distance between elements of
two sets, A,B Ă R2. We define a state x P X to be sorted,
if all classes have at least a distance ε ą 0 from each other
and the obstacles:
Sortedpxq : ðñ min

i,jPC
i‰j

dcpCHpi, xq,CHpj, xqq ą ε

^min
iPC

dcpCHpi, xq,Oq ą ε.
(2)

Let A be the set of planar motions that R is able to
execute. We limit A to motions that are sufficiently slow, so
that pushing dynamics can be assumed to be quasistatic [18].
Given an initial valid state x0 P X , the problem of planar
push sorting is then to compute and execute a series of actions
a P A that transfer the system from state x0 to any valid
sorted state xg P X . In this process, all intermediate states
xi have to be valid, i.e., not colliding with any immovable
obstacles or be out of bounds.

We consider this problem in scenarios where objects are
initially densely packed. In addition, objects of the same

class eventually need to be pushed into the same region.
This renders the ability to purposefully push multiple objects
simultaneously essential to efficiently solve this task.

III. RELATED WORK

A. Non-prehensile Rearrangement

Non-prehensile rearrangement covers a variety of different
tasks. We distinguish between navigation or manipulation
among movable obstacles and large-scale rearrangement tasks.
In navigation or manipulation among movable obstacles,
the priority is to navigate the robot or transport individual
objects in the presence of clutter. In other words, the goal is
expressed with respect to a few individual objects or the robot,
while the remaining objects may be placed anywhere. This
category includes repositioning tasks [19–25], reaching for
an object within clutter [6–8, 26, 27], as well as singulating
or separating individual objects [28–31]. By large-scale
rearrangement, we refer to problems where the goal is
expressed in terms of many objects and all final poses are
relevant to the task. Our sorting task is such a problem, and
to the best of our knowledge, only Huang et al. [15] have
previously addressed such problems in combination with
multi-object pushing.

Huang et al. found that iterative local search (ILS) equipped
with strong heuristics and an ε-greedy rollout policy succeeds
at solving various table-top rearrangement tasks, including
a sorting task of up to 100 cubes. The addressed sorting
problem, however, differs from ours in two key aspects. First,
for the sorting goal, explicit target locations for each class
are provided as input. This allows deriving a heuristic for
action sampling, as it can easily be determined which objects
are misplaced and where they should be pushed to. In our
problem, in contrast, no explicit target locations are provided,
and instead, the planner needs to select suitable locations to
achieve a sorted state itself. Second, the problem specifically
addresses table-top sorting with a manipulator that is capable
of moving the pusher in and out of the pushing plane at any
location. In our problem, the pusher’s motion is constrained
to the pushing plane, requiring it to circumnavigate objects
and obstacles. Designing a strong rollout policy for such
navigation tasks—as needed for ILS—is non-trivial. MCTS,
in contrast, does not require similar heuristics and succeeds
even with a random rollout policy, as our experiments will
demonstrate.

The additional challenges of our sorting problem are useful
to consider for two reasons. First, relieving the user from
providing a sorted target state as input makes the algorithm
easier to use. Second, constraining the pusher’s motion to the
plane is more general. It applies to mobile robots, as well
as to manipulators that have few degrees of freedom, such
as Delta robots. In addition, although not explicitly studied
in this work, our problem formulation resembles a sorting
task in constrained spaces such as shelves and may provide
relevant insights for future work in this direction.

B. Monte Carlo Tree Search for Rearrangement Planning

Monte Carlo tree search has recently been applied
to rearrangement planning problems using pick-and-place.
Zagoruyko et al. [32] use MCTS to rearrange up to 9
objects to user-given target poses. The authors also train a
rollout policy from solutions produced by MCTS that makes
the algorithm efficient enough to replan online and thus
compensate for disturbances during the execution.

King et al. [33] proposed to apply MCTS for pushing
a single object among movable obstacles under uncertainty.
This approach focuses on computing the most robust sequence
of pushing actions by planning on belief space. Here, the
adaptive sampling of MCTS makes this tractable by focusing
the limited computational budget for constructing a state
belief model only on the most promising trajectories.

In contrast, we employ MCTS on a large-scale non-
prehensile sorting task and address uncertainty only indirectly
through replanning. For this, we equip the algorithm with
a heuristic reward signal that allows us to limit the compu-
tationally expensive rollouts, making the algorithm efficient
enough for replanning after each push.

IV. BACKGROUND

In this section, we describe the basic form of Monte
Carlo tree search (MCTS) [16], which we use in our planar
push sorting planner described in Sec. V. MCTS is used
for sequential decision-making problems with state space
X , action space A, reward signal g, and transition model
Γ. Given a current state xt P X the algorithm estimates the
state-action value function Qpxt, .q using simulated episodes
called rollouts and returns the best action. During rollout, it
uses a (often simple) rollout policy to decide on actions and
simulates state transitions using Γ. To focus on high-reward
regions, MCTS builds a search tree with states as nodes and
actions as edges, rooted in the current state. With this tree,
the algorithm maintains value estimates for the states that
are most likely to be reached within a few steps. For every
single iteration, the algorithm executes the following steps
which are also shown in Fig. 2:

Selection: Use a tree policy πtree to traverse from the root
to a leaf node. The tree policy exploits the state-action value
estimates for the states in the tree and balances exploration
and exploitation.

Expansion: Expand the search tree by selecting an action
and adding the reached state as a child node.

Simulation: Use the rollout policy πroll for action selection
and simulate the episode until termination according to Γ.

Backup: Use the return generated by the episode to update
the state-action value estimated for the traversed edges in the
search tree.

Often, MCTS is set to terminate after a certain number of
iterations nmax or through some statistical criterion. Nodes
within the tree are first fully expanded before any of their
children are expanded. If terminal states are too many steps
away for full rollout simulation to be tractable—as it is in
our case—truncated rollouts are used. Then, instead of the
return of the complete episode, some heuristic estimate of the

x

y

MCTS

Initialize new
root node R

Execute
 ai

Update
State

Observation
after action

Rollout
Policy

Selection

A

Root

A

Root

A

Root

A

Root

Expansion Simulation Backpropagation

Repeated

MCTS

Action a*

Update
state

Initialize
MCTS root

Tree Policy

Before

After

After Before After

Fig. 2: The sorting planner’s scheme for real-world execution.

return is backed up. Due to the policy improvement theorem,
selecting the best action at the root node is at least as good
as the rollout policy. However, because the value estimates
are based on long-term consequences, it is usually better. The
details of how we adapt MCTS to the planar push sorting
problem are explained in the following section.

V. PLANAR PUSH SORTING PLANNER

In this section, we first model the PPSP as a sequential
decision-making problem for MCTS. Then, we outline how
our algorithm uses MCTS and decides on termination. We
describe how we simulate PPSP in Monte Carlo rollouts and
detail the four MCTS steps mentioned in Sec. IV. Finally, we
explain how we use deep learning to obtain a rollout policy
from data to improve our MCTS.

A. Sequential Decision-making Problem

To model the PPSP we use the full configuration space
X as the state space and define a robot-centric action space
A with 10 actions as depicted in Fig. 2 on the right. The
robot can translate in 8 different directions and rotate left
and right in small increments. As the transition model Γ,
we employ the physics simulator Box2D,1 which is capable
of modeling multi-object interactions. We model the PPSP
as a deterministic process and compensate for errors in the
physics modeling by replanning after each push.

With our action space, it often takes up to 200 transitions
until a sorted state is reached, which makes large numbers
of full rollouts with the physics simulation practically in-
tractable. For this reason, we use truncated rollouts of length
dmax. However, this means that we cannot use Sortedpxq
from Eq. (2) as a feedback signal since most rollouts do not
reach a sorted state. Therefore, we define a different reward
signal gpxq that provides useful feedback also for unsorted
states and increases when the state becomes more sorted.

Reward signal: We construct the reward signal for a state
x from four components: A measure how compact a class ci
is, Eself

i pxq, how far away class centers are from each other,
Eother
ij pxq, how far away class centers are from obstacles,

Eobst
i pxq, and the distance of the two closest class centers,

1Box2D, A 2D Physics Engine for Games: https://box2d.org/

dcentpxq. Concretely, we define:

Eself
i pxq “

1

|ci|

ÿ

mPci

lnppipxmqq (3)

Eother
ij pxq “ lnp1´ pipµjpxqqq (4)

Eobst
i pxq “

ÿ

oPO
lnp1´ pipxoqq (5)

dcentpxq “ min
i,jPC,i‰j

}µipxq ´ µjpxq}2, (6)

where µipxq denotes the mean position of all objects in
class ci, xo the centroid position of obstacle o, xm the
centroid position of object m, and pipxmq “ e´λp}xm´µi}

2
2q

a Gaussian with variance λ centered at the mean position
of class ci. The term Eself

i pxq increases as objects of class
ci are more compact. The term Eother

ij pxq increases as the
centers of class ci, cj are moved apart. Similarly, the term
Eobst
i pxq increases as the center of class ci is moved away

from obstacles.
We combine these terms together to form the reward signal

gpxq “

|C|
ř

i“1

˜

Eself
i pxq `

i´1
ř

j“1

Eother
ij pxq ` Eobst

i pxq

¸

dcentpxq
. (7)

It is gpxq ă 0 for all states, but it approaches 0 as members
of the same class get closer and members of different classes
separate. It eventually reaches higher values for sorted states
(as defined in Eq. (2)) than for unsorted states. Hence, by
maximizing gpxq, our planner will gradually aggregate objects
of the same class and separate those from different classes.

B. Sorting Planner Outline

Starting with an unsorted state x, our sorting algorithm
repeatedly runs MCTS to obtain the best action for this state,
executes the action and observes the result. This process is
illustrated in Fig. 2 and Algorithm 1. In case we reach a
sorted state, the sorting algorithm terminates. Additionally,
we apply two strategies to detect whether the planner fails in
the sorting process. First, it counts the number of subsequent
actions where the robot has not pushed a single object and
terminates if this number exceeds a conservatively chosen
threshold. Second, it compares the best reward observed for
any visited state during any of the rollouts in MCTS, ĝ, with
the reward of the current state gpxq. If the relative difference
ĝ´gpxq
|gpxq| is smaller than a small threshold ν ą 0, the planner

also returns failure since there is no perspective of improving
the state any further.

C. Monte Carlo Tree Search Implementation

We adapt the MCTS algorithm to our deterministic mod-
eling and reward signal gpxq. The pseudo-code is shown
in Algorithm 1. In the search tree of MCTS, every node
corresponds to a state x P X . Accordingly, the root node
corresponds to the current state xt. For each node s, the
search tree stores the visitation count Npsq, and estimates of
an upper and lower bound of the reachable reward from its
state, V̂upperpxq and V̂lowerpxq, respectively.

Algorithm 1: Planar Push Sorting Planner
xÐ Observe the state
while not Sorted(x) do

a, ĝ Ð MCTS(x)
if IsTrapped(x, ĝ) then Terminate with Failure
Execute(a)
xÐ Observe the state

Terminate with Success
function MCTS(x0)

Initialize the search tree with root x0
ĝ Ð gpx0q; iÐ 0
for i ă nmax do

Select the root node
while Node is fully expanded do

Select child node according to πtree

Expand the current (leaf) node using π0
roll

gmax Ð Truncated simulation rollout using πroll
Backup with return gmax
ĝ Ð maxpgmax, ĝq

a˚ Ð Greedy action selection for x0
return a˚, ĝ

Selection and Expansion are executed as described in
Sec. IV and we use the tree policy πtree as defined below.

Simulation: We use the simulator Γ to predict the effect
a robot action has as it pushes through objects. The actions
are selected either from a random rollout policy πroll or from
a learned rollout policy which is detailed below. The rollout
is truncated after dmax steps to save computation. Since the
rollout policy is sub-optimal—e.g., it may select actions
which worsen previous gains—we return the maximal reward
signal from the rollout gmax instead of the reward signal at
the truncation state as a heuristic estimate of the episode’s
return.

Backup: When a rollout is finished, we increment the
visitation counter Npsq and update the bound estimates for
each traversed node s in the search tree,

V̂upperpxq Ð gmax, if gmax ą V̂upperpxq (8)

V̂lowerpxq Ð gmax, if gmax ă V̂lowerpxq, (9)

where x is the state for node s.
Tree policy: During selection, we use a tree policy πtree

that balances between exploration and exploitation and
additionally considers the visitation count. For this, we
estimate the state-action value Qpx, .q at a node as:

Qpx, aiq “
V̂upperpxiq ´ V̂lowerpxq

V̂upperpxq ´ V̂lowerpxq
` C

d

2 lnNpsq

Npsiq
(10)

where xi is the state of the child node corresponding to action
ai P A. The formula is derived from UCB1 [34], but different
from the standard UCT approach [16] in that we normalize
rewards and use the maximum reward rather than the average.
We choose this modification, as the maximum reward is a
good estimator for Monte Carlo rollouts under a deterministic
model (i.e., simulator). The exploration term C is set to 1?

2
.

Rollout policy: While a completely random rollout policy
guarantees probabilistic completeness, it is much more
sample effective to select actions in an informed way during
simulation. For this reason, we learn a rollout policy from

Channels: 128 256 64 3 64 256 128 3

Stride: 1 2
2

2

Original

Encoded Feature Maps

Conv + ReLU Pooling

Reconstructed

Fig. 3: Architecture of the autoencoder.

Conv
Layer

Max
pooling

128 256 64 3

N N N N

128 25664 512

Res-
module

Fully
Connected

End-effector Pose

Stride 1
2

2

2

Residual module
N=256

64

Avg
pooling

+

Encoder part

State
Probability

Distribution

Fig. 4: Architecture of the policy network.

the successful sorting experience of a random rollout policy
π0

roll as detailed in Sec. V-D below.

D. Learning the Rollout Policy

The rollout policy πroll has to map states x P X to actions
a P A and, after the physical simulation, presents the second
computational bottleneck during Monte Carlo rollout. In our
case, the state space can also be different for different numbers
of objects and obstacles. For this reason, we encode the
positions of objects, obstacles and the robot in the state x
as a 2D color image Ipxq P r0, 1s256ˆ256ˆ3, which shows
the footprint of each object colored by class. This high-
dimensional representation Ipxq requires a policy network
with many parameters and thus would require large amounts
of labeled training data. To alleviate this data acquisition
problem, we first learn a lower-dimensional embedding of the
image space f : Ipxq ÞÑ x̃ P r0, 1s32ˆ32ˆ3 from unlabeled
image data. For the rollout policy, we then learn a mapping
from this lower-dimensional space to probability distributions
over actions, P .

State representation learning: We model the embedding
function f as the encoder module in a convolutional autoen-
coder as seen in Fig 3. The training data is generated from
our simulator, consisting of 120k images with each image
showing 20-30 square objects. The training objective is the
mean squared reconstruction loss.

Rollout policy learning: We model the rollout policy
πroll : pxR, x̃q ÞÑ pP pa1q, . . . , P pa10qq with the deep convolu-
tional architecture ResNet-18, which is reported to be easier to
optimize and resilient against overfitting [35], as depicted in
Fig. 4. The ResNet structure was initially designed for image
classification, while here it is employed for mapping the state
features to action labels. To produce the labeled training data,
we run our planar push sorting planner (see Algorithm 1) as

described above with a fully random rollout policy π0
roll for

sorting 16, 20 and 24 cubes with one static obstacle randomly
placed in the scenes. We record the observed transitions,
16.5k in total, for each solved sorting problem as tuples
pIpxq, xR, QpAqq, where QpAq are the exploitation terms of
the state-action value estimates for x in Eq. (10).

We train the policy model with cross-entropy loss
while keeping the encoder parameters fixed. The train-
ing target is the probability distribution over actions
which arises from normalizing the state-action values, i.e.
P paiq “ Qpaiq{

ř

aPA
Qpaq.

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
algorithm. First, in Sec. VI-B, we conduct experiments to
motivate the choice of MCTS and compare the algorithm’s
performance against several baselines in simulation. Second,
in Sec. VI-C, we quantitatively evaluate how the algorithm
performs in different sorting tasks, including 1) different
number of objects and classes, 2) non-convex objects, and
3) convex objects in the presence of immovable obstacles.
In addition, in the latter case, we evaluate how the learned
rollout policy improves performance. Third, to investigate how
our approach performs under modeling errors, we provide
quantitative results under different degrees of simulated noise
and on a real robot in Sec. VI-D. Lastly, we report the runtime
of our implementation in Sec. VI-E.

A. Experimental Setup

We use three types of objects in our evaluation: cubes
of size 2.5cm ˆ 2.5cm, U-shaped non-convex objects that
can surround a cube, and randomly generated rectangular
obstacles with an area no larger than twice the area of a
cube. Unless stated otherwise, all evaluations are run with the
following parameters: ε “ 0.05m, ν “ 0.05 and dmax “ 3. All
objects are placed randomly in a 50cmˆ 50cm workspace.
The pusher’s action space is set to 5cm translations and
rotations of 45˝. We set the maximal number of actions the
robot is allowed to execute without contacting any object to
15. Finally, all results are reported by the overall success rate
(bold) from running 100 trials, together with the mean and
standard error of the step numbers from successful runs.

B. Baseline Comparison

To motivate MCTS, we compare the following algorithms:
Greedy-policy: Execute the action with the maximal

probability P paiq output by the learned policy.
Greedy-one-step: In state x, execute the action a P A that

achieves maximal reward gpΓpx, aqq by one-step look-ahead
and use random selection for tie breaks.

Greedy-rollout: Run n “ 500 rollouts of depth dmax “ 3
using the random rollout policy. Execute the first action of
the rollout that reaches the maximal reward gpxq and use
random selection for tie breaks.

MCTS-no-rollout: Perform tree search as in Algorithm 1
but obtain rewards only from the leaf nodes without rollouts.

Methods Greedy-one-step Greedy-rollout MCTS-no-rollout ILS-3 ILS-6 Ours-avg Ours

2 classes
20 objs 27% 84% 87% 51% 76% 100% 100%

154.0˘ 10.7 41.4˘ 1.3 39.8˘ 1.6 178.2˘ 9.6 218.9˘ 14.9 46.4˘ 2.0 36.1˘ 1.3

30 objs 10% 41% 66% 22% 42% 97% 96%
231.2˘ 37.5 64.4˘ 3.3 65.7˘ 2.4 294.4˘ 17.4 368.0˘ 25.6 93.5˘ 3.5 77.5˘ 3.6

3 classes
20 objs 14% 49% 54% 40% 62% 96% 98%

170.6˘ 20.7 61.3˘ 2.3 56.5˘ 2.0 232.2˘ 17.5 287.5˘ 14.6 81.0˘ 3.1 66.6˘ 2.3

30 objs 3% 17% 25% 10% 19% 88% 91%
291.3˘ 27.5 98.5˘ 5.1 99.2˘ 4.7 421.6˘ 30.5 535.0˘ 26.9 152.3˘ 5.6 131.5˘ 5.1

4 classes
20 objs 6% 36% 43% 28% 57% 95% 97%

176.7˘ 15.1 74.4˘ 2.3 71.6˘ 2.8 262.1˘ 14.4 329.3˘ 16.3 94.7˘ 2.7 80.1˘ 2.3

30 objs 0% 2% 12% 4% 8% 85% 89%
N. A. 113.0˘ 13.4 108.1˘ 4.2 525.7˘ 10.3 726.5˘ 36.0 182.6˘ 5.00 162.6˘ 4.6

Average Success 10.0% 38.2% 47.8% 25.8% 44.0% 93.5% 95.2%

TABLE I: Quantitative results of comparing different algorithms on sorting 20 and 30 randomly placed cubes assigned to 2, 3 or 4 classes.

Iterated Local Search (ILS): The algorithm as described
in [15] adapted to our problem. For a fair comparison, the
algorithm operates on the same discrete action space A and is
only equipped with a random rollout policy, i.e. no problem-
specific heuristics. In contrast to MCTS, the ILS algorithm is
designed to construct a long pushing trajectory that eventually
reduces the distance to a goal state. In our case, due to the
random rollout policy, the trajectories produced by ILS vary
greatly. This poses a problem if we replan after each action.
The robot may frequently change direction, which results
in little to no progress in the sorting task. To alleviate this,
we employ the following meta-algorithm for closed-loop
execution. In each step, we execute ILS to generate a new
trajectory and compare it to the trajectory planned in the
previous step. Only if the new trajectory is predicted to lead
to a sorted or a state with greater reward gpxq, do we switch
to the new trajectory. Otherwise, we keep executing the old
trajectory. We evaluate ILS algorithm for n “ 500 iterations
of local search of depths dmax “ 3, 6.

Ours-avg: MCTS as shown in Algorithm 1 but with
averaged rewards in Eq. (10). The algorithm is run for
nmax “ 500 iterations.

Ours: MCTS as presented in Sec. V. The algorithm is run
for nmax “ 500 iterations.

We query all algorithms to solve six cube-sorting tasks with
different numbers and classes in simulation. The results are
shown in Table I, in which Greedy-policy is not included as it
fails in all the problems. We observe that the Greedy-one-step
performs poorly, indicating that greedily maximizing gpxq is
insufficient to solve the sorting tasks. In particular, the lack
of guidance on the robot motion makes this simple baseline
struggle. The Greedy-rollout achieves a good success rate
on the easiest problem but rapidly declines as the problem
becomes more complex. This demonstrates the benefits of
selecting actions based on long-horizon rollouts. The same
observation can be made from the performance of the MCTS-
no-rollout. While it can improve over the performance of
the Greedy-rollout, it is clearly outperformed by MCTS with
rollouts (Ours-avg, Ours).

While the ILS algorithm can also solve some instances of
our sorting problem, it performs poorly. This comes at no
surprise, as ILS is not designed for rollout policies that are as
uninformed as the random policy. The tree search in MCTS,

in contrast, improves upon its uninformed rollout policy and
is capable of solving more difficult tasks at high success rates
and with much fewer actions than the baselines. Lastly, while
using different state-action functions has a similar success
rate, we observe that using the maximum reward as in Eq. (10)
leads to on average fewer number of required actions.

C. Different Sorting Tasks

Next, we evaluate the MCTS algorithm on more chal-
lenging problems. In these experiments, we modify the
algorithm to enhance its performance while keeping runtime
low. Specifically, we introduce two additional parameters
nmin and νt to dynamically adjust the maximum number of
iterations. MCTS runs for at least nmin iterations in each
step of the sorting algorithm. If the best encountered reward
value ĝ in those rollouts does not sufficiently improve over the
current state’s reward, ĝ´gpxq

|gpxq| ă νt, the algorithm runs MCTS
for additional nmin iterations. This is continued until either a
sufficiently good ĝ has been observed or nmax iterations have
been reached. Unless stated otherwise, we set nmin “ 500,
nmax “ 1500 and νt “ 0.2.

Settings 20 objs 25 objs 30 objs 35 objs 40 objs
100% 99% 97% 89% 84%

2 cls
34.6˘ 1.8 56.5˘ 2.7 72.2˘ 3.0 98.0˘ 4.9 121.0˘ 6.0

99% 95% 94% 87% 77%
3 cls

65.5˘ 2.3 85.4˘ 3.7 113.4˘ 4.6 146.5˘ 5.9 185.6˘ 9.3
99% 94% 90% 78% 71%

4 cls
78.5˘ 2.7 109.9˘ 3.9 159.6˘ 6.2 202.6˘ 8.4 234.2˘ 11.0

99.3% 96.0% 93.7% 84.7% 77.3%Avg
59.5 84.0 115.1 149.0 180.3

TABLE II: Quantitative results of sorting different number of objects
and classes.

Similar to the experiments in Sec. VI-B, we first query the
algorithm to sort more randomly placed cubes. The results
are shown in Table II. For the more complex test cases with
up to 40 objects, we observe success rates of more than 75%.
According to the increased complexity, we observe much
larger numbers of required actions than in the simpler cases.

Next, we query the algorithm to sort scenes containing
cubes and non-convex U-shaped objects, see Fig. 5. The
U-shaped objects can easily entangle, or trap a cube, which
makes it hard to rearrange these objects. The results shown

ObstaclesNon-Convex

Non-convex 10% 20% 30% 40% 50%

Success 100% 96% 98% 94% 95%
Steps 64.7˘ 2.9 71.2˘ 4.9 84.1˘ 3.7 96.9˘ 3.8 95.2˘ 4.3

Fig. 5: (Top) example scenes with non-convex objects and obstacles.
(Bottom) quantitative results of sorting 20 objects with 10% „ 50%
ratios of non-convex objects.

in Fig. 5 indicates the algorithm can well handle this case,
and the success rate is not significantly influenced. However,
the step number grows as the ratio of convex objects increases.
This is due to the fact that the robot needs to spend additional
actions on disentangling objects from each other.

The third experiment is to sort 20 cubes of 2 classes in
the presence of 1, 2 and 3 immovable obstacles, see Fig. 5.
These are the most difficult problems, as it is hard to recover
from pushing an object too close to an obstacle. Moreover,
the robot’s motion is more constrained and it needs to cir-
cumnavigate obstacles. In this experiment, the learned rollout
policy and the random one are compared. For this, we run the
planner with different parameter settings for the number of
iterations nmin, nmax and rollout depth dmax (p500, 1500, 6q,
p500, 1500, 3q and p500, 500, 6q respectively).

1 obstacle 2 obstacles 3 obstacles
0

20%

40%

60%

80%

100%

Su
cc

es
s

R
at

e

1 obstacle 2 obstacles 3 obstacles
60

80

100

120

140

160

#S
te

ps

500-1500-6*
500-1500-3*
500-500-6*
500-1500-6
500-1500-3
500-500-6

Fig. 6: Quantitative results of success rates (left) and numbers of
steps (right) for sorting 20 cubes in the presence of immovable
obstacles. Different parameter settings are presented by bars with
different colors, where solid colors denote the use of the learned
policy and transparent colors denote the use of the random policy.

Recall that the learned policy is trained from sorting
cubes in scenes with only one immovable obstacle. The
results shown in Fig. 6 indicate that the MCTS with the
learned policy successfully generalizes to problems with
more obstacles. Further, the more obstacles, the greater is
the benefit of using the learned policy over the random one.
By comparison with the zero success rate of using Greedy-
policy, it further validates that MCTS provides a gain over
the rollout policy. For both policies, a larger rollout depth and
more iterations are unsurprisingly beneficial. Accordingly, the
dynamic adjustment of iterations leads in both cases to an

Noise Level No Noise Mild p50%q Severe p75%q
100% 100% 99%20 objs

36.1˘ 1.3 36.1˘ 1.2 39.6˘ 2.0
96% 97% 97%2 classes

30 objs
77.5˘ 3.6 78.1˘ 3.2 81.8˘ 3.9

98% 96% 95%20 objs
66.6˘ 2.3 71.9˘ 2.9 83.2˘ 3.7

91% 91% 91%3 classes
30 objs

131.5˘ 5.1 144.5˘ 7.0 151.2˘ 6.5
97% 95% 98%20 objs

80.1˘ 2.3 83.2˘ 3.7 83.7˘ 3.6
89% 89% 82%4 classes

30 objs
162.6˘ 4.6 182.7˘ 6.6 195.9˘ 8.7

Average Success 95.2% 94.7% 93.7%
Average # Steps 92.4 99.4 105.9

TABLE III: Quantitative results of using different levels of uncer-
tainty on sorting 20 and 30 cubes belonging to 2, 3 or 4 classes

improvement in success rate. It is noteworthy that the learned
policy can even achieve better results than the random one
when using fewer iterations or a shorter rollout depth.

D. Evaluation Under Uncertainty

In our last experiments, we evaluate the algorithm’s perfor-
mance under modeling error in the physical parameters. We
first perform experiments in simulation to solve different cube-
sorting tasks with a fixed number of iterations nmax “ 500. To
simulate modeling error, we add Gaussian noise N p0, p ¨ cf q
on the contact friction coefficient cf between objects and
the ground when simulating the execution of an action. We
test with mild noise p “ 0.5 and severe noise p “ 0.75. The
results are shown in Table III. In most cases, the noise has
little effect on the success rate. We can observe, however,
an increase in the average number of actions needed, which
indicates an error-correcting behavior.

Lastly, we run the planner on a real ABB Yumi for two
test cases: sorting 2ˆ6 cubes and sorting 3ˆ5 cubes. Due to
hardware limitations, the workspace in these experiments is
with 39cmˆ 25cm, significantly smaller than in the previous
experiments. For each case, we run 20 trials from the same
initial configuration. The results are reported in Fig. 7. While
in simulations we observe very few failures for these test
cases, we observe more on the real robot. All failures on the
real robot occurred due to pushing a cube out of bounds. This
clearly highlights a vulnerability against uncertainty in states
close to the boundary. As long as cubes are well within the
workspace, however, the closed-loop approach compensates
for modeling errors. This is reflected in the increase in the
average number of actions needed to solve both cases.

E. Runtime

We parallelized the MCTS in implementation and ran it
with 8 threads on an Intel i7-7820X. As GPU for the learned
policy, we used 2ˆNVIDIA GTX 2080TI. The learned policy
network contains 11.69M parameters, with an inference time
of 2.58ms. For all results with random policy presented in
Table II, the average planning time per action is 2.16s. For the
sorting tests with immovable obstacles under the 500-1500-3
setting in Fig. 6, the average planning time per action is 3.09s
with random policy and 4.37s with learned policy.

Before

After

Test Case 2ˆ 6 cubes 3ˆ 5 cubes

Simulation 96%, 31.5˘ 1.2 99%, 23.9˘ 0.6
Real World 16/20, 37.0˘ 3.5 15/20, 27.7˘ 2.1

Fig. 7: Quantitative real robot experiments with an ABB Yumi on
two test cases. We execute 20 trials to sort 2 ˆ 6 and 3 ˆ 5 cubes
respectively. For the comparison in simulation, 100 trials were run.

VII. CONCLUSION

We addressed a planar non-prehensile sorting task, where
a robot needs to separate many objects according to user-
defined class membership. In this problem, the robot needs to
disentangle, circumnavigate and simultaneously push multiple
objects. We adopted Monte Carlo tree search to solve this task
and observed its effectiveness in various sorting scenarios,
despite only being equipped with a random rollout policy. In
addition, we observed that we can improve the algorithm’s
performance by equipping it with a learned rollout policy
trained from planning experiences.

These results are encouraging to further develop the use
of MCTS for non-prehensile rearrangement. In future work,
we intend to extend the approach to minimize the number of
actions needed to achieve a sorted state. Further, the heuristic
reward could be replaced by a value function trained from
sorting experience to better estimate the states. Lastly, we
believe the efficiency can yet be further improved from reusing
previously grown search trees to save computation time.

ACKNOWLEDGMENT

This work was supported by the Innovation and Technology
Fund (ITS/018/17FP and ITS/104/19FP) of the Government
of the Hong Kong Special Administrative Region, as well as
the Swedish Foundation for Strategic Research and the Knut
and Alice Wallenberg Foundation.

REFERENCES
[1] G. Wilfong, “Motion planning in the presence of movable obstacles,”

Annals of Mathematics and Artificial Intelligence, no. 1, 1991.
[2] M. Stilman and J. J. Kuffner, “Navigation among movable obstacles:

real-time reasoning in complex environments,” International Journal
of Humanoid Robotics, vol. 02, no. 04, pp. 479–503, 2005.

[3] M. Stilman and J. Kuffner, “Planning among movable obstacles with
artificial constraints,” in Int. Journal of Robotics Research, 2008.

[4] J. Van Den Berg, M. Stilman, J. Kuffner, M. Lin, and D. Manocha,
“Path planning among movable obstacles: a probabilistically complete
approach,” in Algorithmic Foundation of Robotics VIII, Springer, 2009.

[5] D. Nieuwenhuisen, A. F. van der Stappen, and M. H. Overmars, “An
effective framework for path planning amidst movable obstacles,” in
Algorithmic Foundation of Robotics VII, pp. 87–102, Springer, 2008.

[6] N. Kitaev, I. Mordatch, S. Patil, and P. Abbeel, “Physics-based trajectory
optimization for grasping in cluttered environments,” ICRA, 2015.

[7] W. C. Agboh and M. R. Dogar, “Real-time online re-planning for
grasping under clutter and uncertainty,” Humanoids, 2018.

[8] Muhayyuddin, M. Moll, L. Kavraki, and J. Rosell, “Randomized
physics-based motion planning for grasping in cluttered and uncertain
environments,” IEEE Robotics and Automation Letters, 2018.

[9] M. Stilman, J. U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” ICRA, 2007.

[10] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rear-
rangement tasks,” IEEE Transactions on Robotics and Automation,
vol. 14, no. 4, pp. 549–565, 1998.

[11] A. Krontiris and K. Bekris, “Dealing with Difficult Instances of Object
Rearrangement,” RSS, 2015.

[12] A. Krontiris and K. E. Bekris, “Efficiently solving general rearrange-
ment tasks: A fast extension primitive for an incremental sampling-
based planner,” ICRA, 2016.

[13] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “FFRob: Lever-
aging symbolic planning for efficient task and motion planning,” The
International Journal of Robotics Research, vol. 37, no. 1, 2018.

[14] S. Han, N. Stiffler, A. Krontiris, K. Bekris, and J. Yu, “High-quality
tabletop rearrangement with overhand grasps: Hardness results and fast
methods,” RSS, 2017.

[15] E. Huang, Z. Jia, and M. T. Mason, “Large-scale multi-object
rearrangement,” in ICRA, 2019.

[16] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton,
“A survey of monte carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in Games, 2012.

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[18] K. M. Lynch and M. T. Mason, “Stable pushing: Mechanics, controlla-
bility, and planning,” Int. Journal of Robotics Research, 1996.

[19] J. E. King, J. A. Haustein, S. S. Srinivasa, and T. Asfour, “Nonprehen-
sile whole arm rearrangement planning on physics manifolds,” ICRA,
2015.

[20] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning
using object-centric and robot-centric action spaces,” ICRA, 2016.

[21] J. E. King, V. Ranganeni, and S. S. Srinivasa, “Unobservable Monte
Carlo planning for nonprehensile rearrangement tasks,” ICRA, 2017.

[22] J. A. Haustein, J. King, S. S. Srinivasa, and T. Asfour, “Kinodynamic
randomized rearrangement planning via dynamic transitions between
statically stable states,” ICRA, 2015.

[23] J. A. Haustein, I. Arnekvist, J. Stork, K. Hang, and D. Kragic,
“Learning manipulation states and actions for efficient non-prehensile
rearrangement planning,” arXiv preprint arXiv:1901.03557, 2019.

[24] W. Bejjani, R. Papallas, M. Leonetti, and M. Dogar, “Planning with
a receding horizon for manipulation in clutter using a learned value
function,” Humanoids, 2018.

[25] L. Pinto, A. Mandalika, B. Hou, and S. S. Srinivasa, “Sample-efficient
learning of nonprehensile manipulation policies via physics-based
informed state distributions,” CoRR, vol. abs/1810.10654, 2018.

[26] S. Elliott, M. Valente, and M. Cakmak, “Making objects graspable
in confined environments through push and pull manipulation with a
tool,” in ICRA, 2016.

[27] M. Laskey, J. Lee, C. Chuck, D. Gealy, W. Hsieh, F. T. Pokorny, A. D.
Dragan, and K. Goldberg, “Robot grasping in clutter: Using a hierarchy
of supervisors for learning from demonstrations,” in CASE, 2016.

[28] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile,” in ICRA, 2012.

[29] T. Hermans, J. M. Rehg, and A. Bobick, “Guided pushing for object
singulation,” in ICRA, 2012.

[30] A. Eitel, N. Hauff, and W. Burgard, “Learning to singulate objects
using a push proposal network,” in ISRR, 2017.

[31] M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push
policies to increase grasp access for robot bin picking,” in CASE, 2018.

[32] S. Zagoruyko, Y. Labbé, I. Kalevatykh, I. Laptev, J. Carpentier,
M. Aubry, and J. Sivic, “Monte-carlo tree search for efficient visually
guided rearrangement planning,” ArXiv, vol. abs/1904.10348, 2019.

[33] J. E. King, V. Ranganeni, and S. S. Srinivasa, “Unobservable monte
carlo planning for nonprehensile rearrangement tasks,” in ICRA, 2017.

[34] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine learning, pp. 235–256, 2002.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” arXiv preprint arXiv:1512.03385, 2015.

